

結晶成長における実験と数値解析の魅力 一結晶成長学の理想を追って 一

柿本 浩一 九州大学 応用力学研究所

研究室メンバー

九州大学 応用力学研究所 2001-2020

橋本 良夫	助教授→高専教授		
寒川 義裕	准教授→教授		
石井 秀夫	助手		
劉立軍	研究員→西安交通大教授		
松尾 有里子	研究員		
陳 雪江	研究員→西安交通大准教授		
高冰	特任准教授→武漢大教授		
池田 和磨	研究員		
川野潤	特任助教→北大准教授		
李 維東	研究員→武漢大教授		
ハ゛レンシア ユヘ゛ルト	研究員→名大研究員		
劉鑫	研究員→名大研究員		
田代 昭正	技官		
篠崎 高茂	技官		
中野 智	技官→博士		
山田美希	秘書		
大坪 潤子	秘書		
ニエ リンク゛リンク゛	秘書		
平田 紀子	秘書		
原田 博文	研究員201804.01特任教授		
宮村 佳児	研究員201904.01特任准教授		
モエ ジョマ	訪問研究員		
HAN XUEFENG	研究員→アルプ大研究員		
Tomasz KEMPISTY	訪問研究員		
毛利 奈緒美	秘書		

NEC 基礎研究所 1985-1996

江口 実	NEC研究員		
中村 新	主任研究員		
渡辺 久夫	研究員		
日比谷 孟俊	主幹研究員		
Kyung-Woo Yi	研究員(ソウル大・教授)		
渡邊 匡人	研究員		

九州大学 機能物質科学研究所 1996-2001、熱、環境エネルギーエ学専攻

尾添 紘之	機能物質科学研究所·教授			
今石 宣之	機能物質科学研究所·教授			
赤松 正人	博士			
福井英人	修士			
Yoo Cheol WON	博士			
菊地 晋	修士			
末永英俊	修士			
梅原猛	修士			
森友武	修士			
上村 昌己	修士			
野口慎一郎	修士			
王 育人	研究員(中国科学院·教授)			
学生:修士74	MECHANICS			

研究室メンバー

九州大学 応用力学研究所、航空宇宙工学専攻2001-2020

北嶋 具教	博士
斉藤 敏克	修士
末松 護	修士
土橋 健太郎	修士
村川 淳	修士
近藤 直樹	修士
原田 信一	修士
井上	修士
河村 貴宏	修士→博士
堀川 貢弘	社会人博士
桜場 茂圭	修士
米田 大悟	修士
柏木 大輔	修士
勝谷 匡博	修士
高橋 奈菜子	修士
堀 大輔	修士
R. Bairava Ganesh	研究生
松尾 整	博士
宮澤 宏章	修士
脇川 達人	修士
長野 利彦	修士
久松 翔	修士→博士
屋山 巴	修士→博士
ト之 康一郎	社会人博士

乾史憲	修士		
井上 仁人	修士→博士		
白桃拓哉	修士		
土岐隆太郎	修士		
井上 真翔	修士		
末次 弘茂	修士		
中庭 好崇	修士		
濱田 達郎	修士		
荒木 清道	修士		
住吉 央朗	修士		
草場 彰	修士→博士		
宮崎 和眞	修士		
横山竜介	社会人博士		
田村 卓也	修士		
福島 航	修士		
井手 智朗	修士		
稲富 悠也	修士		
間地 雄大	修士		
宮崎 聖	修士		
山本 悟司	修士		
村上 大祐	修士		
宮田 賢大	修士		
中野 智	博士		

学生:修士40名,博士10名

学会、共同研究

<u>学会</u>

- 日本結晶成長学会(ポラリス)
- 応用物理学会(事務局)
- 国際結晶成長機構 (IOCG)
- 日本学術会議
- 日本学術振興会,他

- 北大、東北大、新潟大、山梨大、東大、東工大、早稲田大、慶応大、明治大、名古屋大、豊田工大、阪大、阪府大、三重大、九工大、佐賀大、宮崎大、他
- AIST, NIMS, JAXA, KEK, NPARC-J, SPring-8, 他
- カトリック大, Grenoble大,西安交通大, IKZ, SINTEF, Minnesota大, Lisbon大、Anna大、他
- 民間企業 33社

受賞

- ドイツ結晶成長学会名誉会員第1号選出(2020.03)
- 応用物理学会フェローに選出(2017.09)
- 日本結晶成長学会論文賞受賞(1988.08)、他

研究に対するモットー

- 長く評価される研究成果の創出する。
- 実験も計算も既製品をそのまま使用しない。

実験装置も計算コードもすべて自作する。

- 現象の表現は数式と図で具現化する。
- 数値解析は予測が使命。2つ以上の物理量の定量予測する。
- 研究に対して誠実に取り組む。
- 楽しく研究する。研究が好きになる。
- 結晶成長学の理想は、現象を定量的に予測する。
- 自分以外の社会のためになることを行う。

子、孫、ひ孫が笑って安全に暮らせるように。

研究歴

研究歴

研究歴

dX.

応物初発表:1980年3月山梨大学:DLTS用ゲート回路図と Si-MOSダイオード界面における電子捕獲断面積

T. Katsube, K. Kakimoto, T. Ikoma, J. Appl. Phys. 52 (1981) 3504.

結晶成長:初講義(西永頌教授), J. A. van Vechten, L. Pauling

H=U+pV: Enthalpy

material	short-range force parameters			ionicity
	α	β	α/β	fi
С	129.33	84.76	0.655	0
Si	48.50	13.81	0.285	0
Ge	38.67	11.35	0.294	0
Alsb	35.35	6.77	0.192	0.426
GaP	47.32	10.44	0.221	0.374
GaAs	41.19	8.95	0.217	0.310
GaSb	33.16	7.22	0.218	0.261
InP	43.04	6.24	0.145	0.421
InAs	35.18	5.50	0.156	0.357
InSb	29.61	4.77	0.161	0.321
ZnS	44.92	4.78	0.107	0.623
ZnSe	35.24	4.23	0.120	0.676
ZnTe	31.35	4.45	0.142	0.546
CdTe	29.02	2.43	0.084	0.675
CuC1	12.60	1.00	0.079	0.746

$$\bigcup_{bs} = \frac{1}{2} \mathcal{A} \left(\frac{3}{4r^2} \right) \sum_{\lambda=1}^{4} \left[\Delta \left(| r_{\lambda} \cdot | r_{\lambda} \right) \right]^2$$

Bond Stretching Energy

$$V_{4b} = \frac{1}{2} \beta \left(\frac{3}{4r^2} \right) \sum_{i,j \neq i} \left[\Delta \left(|Y_i \cdot |Y_j| \right) \right]^2$$

Bond Bending Energy

VFF model: Force constants of Bond stretch & Bending

Ga_{1-x}In_xAsに蓄積した 歪エネルギー

Ga_{1-x}In_xAsのボンド偏角の温度依存性

Ga_{1-x}Al_xAsのボンド偏角の温度依存性

DLPモデル: J. Stringfellow, 2016 ICCGE-18, Frank prize.

研究歴

Crystal Growth Method (Melt Science)

Flow visualization of metallic melt of Si (自由な環境)

Global Simulation for CZ-Si Growth (Generalization)

Temperature distribution and gas flow

UCL: Global model (Dupret's algorithm)

$$\frac{q(x)}{\varepsilon(x)} - \int_{x^* \in \partial V} K(x, x^*) \frac{1 - \varepsilon(x^*)}{\varepsilon(x^*)} q(x^*) dS^*$$
$$= \sigma T^4(x) - \int_{x^* \in \partial V} K(x, x^*) \sigma T^4(x^*) dS^*$$

Axi-symmetric coordinate

$$\frac{q(x)}{\varepsilon(x)} - \int_{x' \in p(\partial V)} r' K_c(x, x') \frac{1 - \varepsilon(x')}{\varepsilon(x')} q(x') ds'$$
$$= \sigma T^4(x) - \int_{x' \in p(\partial V)} r' K_c(x, x') \sigma T^4(x') ds'$$

Axisymmetric VF:

$$K_{c}(x, x') = 2\int_{0}^{\pi} K(x, x^{*}) d\theta^{*} \qquad x = (r, 0, z) \in p(\partial V)$$
$$x' = (r', 0, z') \in p(\partial V)$$
$$x^{*} = (r' \cos \theta^{*}, r' \sin \theta^{*}, z') \in \partial V$$

研究歴

In-situ observation of S/L interface of Si by X-ray radiography (JSPS Pj)

Droplet formation in Si? w. o. Dislocation

Melting process: CZ crystal, 20° /min.
dot images

Time-interval: 10 sec.

Contrast: negative contrast

Siの熱伝導率の不純物濃度依存性(室温、フォノンのみ)

²⁸Si:²⁹Si:³⁰Si=92.1:4.7:3.1 (天然シリコン), ²⁸Si:²⁹Si:³⁰Si=99.0:0.6:0.4 (純化シリコン)

 $\Gamma^{-1} \propto f_i \{ (m_j - m_A)/m_A \}^2$ f_i : mole fraction m_j : mass of j atom m_A : average mass

- 1. 母結晶と不純物の質量差大:熱伝導度低下
- 2. B, As(約10¹⁹cm⁻³)から低下、B, As(約10²⁰cm⁻³)から低下
 →同位体Si、天然Si同じ
- 3. 低濃度:同位体効果大、高濃度:低濃度:同位体効果小

高濃度不純物添加Si結晶熱伝導度の温度依存性(思考実験)

B: 2x10²⁰cm⁻³

As: 2x10²⁰cm⁻³

k_=8.28-2.35e-2T+2.01e-5T²-4.3e9T³

after F. J. Morin, Phys. Rev. 96 (1954) 28.

1000K<T<1685K: k(高濃度添加)=k(低濃度添加)

Thermal conductivity of Isotope Si, Ge & SLs

Atsushi Murakawa, Hideo Ishii and Koichi Kakimoto, J. C. G., 267 (2004) 452.
 Hideo Ishii, Atsushi Murakawa and Koichi Kakimoto, J. A. P., 95, (2004) 6200.

3) Takahiro Kawamura, Yoshihiro Kangawa, Koichi Kakimoto,

phys. stat. sol. (c) 4, (2007) 2289.

SiC熱伝導度と不純物濃度

C原子を置換

Si原子を置換

研究歴

Temperature distribution in a Si-TMCZ furnace

Temperature distribution at the hot-zone

3D melt domain: 117,100

Total cell volumes: 535,000 (3D) + 3,000 (2D)

Total radiative elements: 57,650 (3D) + 900 (2D) Cal. Time: 43 days HP ITANIUM-2

Temperature difference over circumference at some positions

Refer to: L.J. Liu, K. Kakimoto, Int. J. Heat Mass Transfer, 48(21-22), 2005, p.4481-4497

3D interface shape induced by 3D thermal flow

melt surface

Convective flow, thermal field and interface profiles in two symmetric half-planes

T. Kajigaya, et al, J. Cryst. Growth, 112(1991), 123-128

Melt-crystal interface Vs. crystal pulling rate and magnetic field intensity

Dependence of axial temperature gradient at the interface on crystal pulling rate

Dependence of Interface deflection on crystal pulling rate

Electrical conductivity & Emissivity of Silicon

Fig. 4b. Natural logarithm of conductivity versus inverse temperature for all the tests.

from the Journal of Applied Physics, 74, 6353(1993).)

Fig. 5. Comparison of our measured electrical conductivity with data already published.

Emissivity vs. T.

ic pattern 🏾 🎆 📡

Asymmetric pattern

Axisymmetric pattern

Comparison of exp. and num. results

Almost reproduced.

[ref] R. Yokoyama, et al., J. Cryst. Growth 519 (2019) 77-83.

Oxygen distribution in Si melt of MCZ

(a) TMCZ (b) Cusp-shaped MCZ

- Thin boundary layer
- Precise control

- Rather thick boundary layer
- Stable operation

Impurity Transport in a Solidification Furnace of Si

B. Gao, S. Nakano, K. Kakimoto: Journal of the Japanese Association of Crystal Growth Vol.36, No.4 (2009) 261-267

Time development of melt flow, temperature and impurities distributions

Fi

Stream function of melt flow

Iron concentration

Temperature distribution

Carbon concentration

Fe distribution and minority carrier lifetime

Impurity reaction & transfer

Impurity distribution \Rightarrow Time dependent calculation

37

Si₃N₄ Distribution

¹⁾ H. Harada, et al., private communication.

Time evolution of distributions of O, N, Si₂N₂O, Si₃N₄, and precipitates

Progress: seed casting

- Dislocation can generates between the seeds, and could explosively multiply when crystal grows up.
- **Crystallization process could be broken by high dislocation at top.**
- High cost for multiple seeds

Objective:

Propose new method to grow complete single-Si in whole ingot by seed casting

Single Seed Cast method of Si

Improved furnace for C reduction

Improved crystal surface

50cm² Si ingot grown by seed cast

Naフラックス法; GaN

実験との平均成長速度の比較

Si一方向性凝固

Inverse problem: Si (Temp. impose)

Numerical & Experimental

Dislocation-density distribution

(a) Simulation

(b) Experiment

Both show high dislocation-density at

- two corners of bottom, center of both ends, middle of side surface;
- two diagonals near four corners

Numerical data agrees well with experiment.

Exp. & Numerical results

Both show a

- decrease-increase-decrease variation around edge
- Rectangle rotation in the interior of slice

Numerical data almost agrees with experiments

Strain distributions along z-axis at R.T.

K. Jiptner, et al., Physica Status Solidi C, 10 (2013) 141.

Dislocation density vs. Stress relaxation

Growth orientation dependence of dislocations

Dislocation distribution on the surface of ingot

- $N_{\text{max}}^{[001]} = 7900 \ cm^{-2}$ $N_{\text{max}}^{[112]} = 8300 \ cm^{-2}$ $N_{\text{max}}^{[111]} = 4300 \ cm^{-2}$ $N_{\text{max}}^{[110]} = 17 \ cm^{-2}$
 - [110] growth produces the lowest dislocations
 - [112] growth produces the highest dislocations
- [111] growth can reduce dislocations by almost 50% compared to [001] or [112] growth

Dynamic pulling modeling

Remeshing must be realized for puling crystal with fix melt level and mesh quality.

Dislocation density: 300mm & Particle incorporation

Dislocation density (3sec)

転位計算モデル (酸素拡散モデル)

(3) J. Cochard, I. Yonenaga, S. Gouttebroze, M. M'Hamdi, Z. L. Zhang; J. Appl. Phys. 2010, 108, 103524.

転位計算モデル(温度、酸素濃度)

冷却過程

結晶の3次元転位密度分布(室温時)

酸素拡散非考慮

酸素拡散考慮

 $c_{O_P} = c_{O_{max}} = 8.71 \times 10^{17} \text{atoms/cm}^3$ の点Pの転位密度を解析

酸素濃度と最大転位密度の関係

Oxygen conc. vs. dislocation density

CZ :
$$C_0 = 10^{17} \sim 10^{18}$$
 cm

 -1016 cm^{-3}

Time-dependent crystal growth: SiC

Experiment

Calculation

Crystal growth with constant RF power

Physical Vapor Transport meth

SiC Physical Vapor Transport (PVT)

Comparison with experimental data

BPD distribution at room temperature (SiC)

S.G.Muller, et al., Mater. Sci. Eng. B80,2001,327-331.

B. Gao, et al., Cryst. Growth Des., 14 (2014) 1272–1278.

HAS model parameters (GaN, Sapphire)

2) B. Gao, et al., Crystal Growth & Design, 14 (8), (2014) 4080.4) B. Gao, et al., Journal of Applied Physics, 117, 035701 (2015).

BPD distribution in room temperature (Al₂O₃)

Six-fold symmetry for BPD distribution in Al₂O₃

Dislocation core in atomic scale

Cohesive energy Undetermined parameters Velocity of mobile dislocations $v = k r_{eff}^n e^{-k_B T}$ Q ► (1) Activation enthalpy: **Plastic strain rate** (2) Stress exponent: n $\frac{d\gamma_{pl}}{d\gamma_{pl}} = N_m v b$ GaN(Ga-Ga) / Al₂O (3) Constant: k Multiplication rate of (4) Second stress exponent: SiC:C(C-C) dislocations density dN_m Multiplication constant: (5) $=K\tau_{eff}^{\lambda}N_{m}v$ Si(Si-Si K 2 Effective stress for dislocation Si (h) (g) multiplication $\tau_{e\!f\!f} = \tau_a - D \sqrt{N_m}$ 3[1100] 1 0.5 =1/ 0 (a) $(11\bar{2}0)$ 2 0 1 k_0 Κ λ Q(eV)m 30°-Si(g) partial Pierrs potential (eV) Si 8.57x10⁻⁴ 3.1x10⁻⁴ 1.1 1.0 2.2 SiC (T>10000C) 8.5x10⁻¹⁵ 7.0x10⁻⁵ 2.8 1.1 3.3 7-folded symmetry of BPD: SiC SiC(T<1000C) 8.5x10⁻¹⁵ 7.0x10⁻⁵ 2.8 0.6 2.6 8-folded symmetry for PPD: GaN

 Al_2O_3

GaN

1.08x10⁻⁸

8.9x10⁻¹⁵

 1.7×10^{-3}

5.9x10⁻¹⁷

3.0

2.1

0.9

2.7

4.71

2.4

A.F. Wright et al., A. P. L., 73 (1998) 2752

Controlling the growth of polytypic SiC crystals Y. M. Tailov and V. F. Tsuvetakov

Stacking fault vs. ionicity $\Box f_i = C^2/E_g^2, E_g^2 = E_h^2 + C^2$

J. C. Philips, Bonds and Bands in Semiconductors (1973) A. Press J. A. van Vechten, A simple man's theory.

Hexagonality (D) vs. crystal structure

Hexagonality:

charge distribution in third

Fig. 2. Correlation between stacking-fault energy γ in $A^n B^{8-n}$ compounds and orbital coordinate R_{α} .

Argon gas effect on growth rate; SiC

[3] S.Nishizawa, et al., Materials Science Forum, 457-460(2004)29-34.

Polytype stability (2D Nucleation)

Sublimation : SiC bulk crystal growth (layer by layer growth)

Classical 2D nucleation theory

I. Markov, R. Kaischew, Kristall und Technik, **11** (1976) 685-697.

Relation between probability of nucleation & nucleation energy : $P \propto \exp \left[-\frac{1}{2} \right]$

 ΔG

Polytipism analysis: SiC by 2D nucleation

Surface energy of SiC calc. by SIESTA

F. Mercier, S. Nishizawa, J. Crystal Growth 360 (2012) 189.

Global analysis

Nucleation free energy: C-, Si- faces

研究歴

Save energy: Invertor's history

• Reasonable cost 77

Carrier lifetime vs. Carrier conc. of Si

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, Phys Rev. B 86, 165202 (2012)

Monitoring points; Num. & Exp.

Modeling of Crystal Growth Processes III Thursday, August 1, 11:30 - 11:45: Xin Liu, et al.

In-situ CO measurement in CZ furnace

Y. Miyamura, H. Harada, X. Liu, S. Nakano, S. Nishizawa, K. Kakimoto, Journal of Crystal Growth 507 (2019) 154-156.

CO measurement

A: Exhaust B: Above melt

C conc. Vs. Lifetime of Si

Experimental setup of CO monitoring

CO concentration

CO concentrations by (1) (2) (3)

CZ furnace in Kyushu University

18" Hot zoneAxis (100)Dopant P(n-type)Crystal Diameter 3" & 9"

<u>No.</u>	Carbon	Resistivity	
Ι	High-C	30 Ωcm	
Π	High-C	30 Ωcm	
Ш	Low-C	30 Ωcm	Power devices
IV	Low-C	30 Ωcm	
V	Low-C	50 Ωcm	
VI	Low-C	2 Ωcm	PVs

Sample	Al	Cu	Fe	Mg	Ni	Cr	Na	К	Ga
Α	4.2E10	7.4E10	1.1E10	2.1E10	<2E9	<2E9	1.6E11	3.3E11	<1E9
В	6.2E9	<2E9	<2E9	<3E9	<2E9	<2E9	5.3E10	4.2E10	<1E9
Limit	3E9	2E9	2E9	3E9	2E9	2E9	3E9	2E9	1E9

(Units: atoms/cm²)

N-type: 8 inches CZ-Si 10msec bulk lifetime

Numerical modeling

Results and discussion

Results and discussion

Comparison between calculation and experimental results.

研究歴

Organization of ICCGE-18(学術会議主催)

·日 時:平成28 (2016) 年8月8日 (月) 9:10~9:59

・会 場:名古屋国際会議場「センチュリーホール」(1号館1階)

時間	次 第	備考
09:00 (10)	登壇者入場・ご紹介	司 会者より (英語)
09:10 (2)	皇太子同妃両殿下御臨席	司 会者より (英語)
09:12 (8)	開会・歓迎の辞:日本結晶成長学会会長/ 第18回結晶成長国際会議組織委員会委員	英語
09:20	柿本 浩一 主催者挨拶:日本学術会議会長 大西 隆	英語
09:25 (5)	主催者挨拶:公益社団法人応用物理学会会長:保立和夫	英語
09:30(5)	母体団体代表挨拶:結晶成長国際機構(IOCG)会長	英語
09:35 (5)	Roberto Fornari ロベルト・フォルナリ <u>皇太子殿下 お言葉</u>	英語
09:40 (5)	来賓祝辞:内閣府特命担当大臣 島尻 安伊子	英語
0 9:4 5 (4)	来賓祝辞:愛知県知事 大村 秀章	未定
09:49 (4)	来賓祝辞:名古屋市長 河村 たかし	未定
09:53 (2) 0.9:5	内閣総理大臣メッセージ披露	司会者より (英語) ^{古 五}
09:5 5 (3)	閉式の辞:第18回結晶成長国際会議組織委員会委員長	天市 司会者上り
09:5	皇太子同妃両殿下御退席	(英語)
(1) 0 9 : 5	閉会	
9		

Organization of ICCGE-18(学術会議主催)

第18回結晶成長国際会議(ICCGE-18) 御昼食会概要(案)

○日時:平成28年8月8日(月)11:30~12:40
 ○会場:名古屋国際会議場 展望レストラン「パステル」(1号館7階)
 ○学会サイド参加予定人数: 8名(うち外国人 1名)

·日本結晶成長学会会長/

第18回結晶成長国際会議組織委員会委員長:柿本 浩一

- ·日本学術会議会長 大西隆
- ・公益社団法人応用物理学会会長:保立 和夫
- ・結晶成長国際機構 (IOCG) 会長: Roberto Fornari (いいり・フォルナリ) (※通訳同席)
- ·内閣府特命担当大臣 島尻 安伊子

【以下,留保】

- ・第18回結晶成長国際会議組織委員会委員長:荒川 泰彦
- ・第18回結晶成長国際会議国際諮問委員会名誉委員長/ 2014年ノーベル物理学賞受賞者:赤崎勇
- ・第18回結晶成長国際会議組織委員会副委員長/
 2014年ノーベル物理学賞: 天野浩
- ○愛知県:4名
 - ·愛知県知事:大村 秀章
 - ·愛知県議会議長:横井 五六
 - ・名古屋市長:河村 たかし
 - ・名古屋市会議長:藤沢 ただまさ
- ○宮内庁東宮職(殿下お一方の場合)3名
- 東宮大夫(又は東宮侍従長),行啓主務官,東宮侍医
- ○メニュー(※詳細は未定)
- ○御先導:名古屋国際会議場館長 中谷 務

Special lecture to the Crown Prince

日時:2016,7,14,14:00-15:00 場所:東宮御所 黒柿の間 時間:45分:ご進講 "結晶成長" 15分:質問とお茶

学術振興会主催国際会議: 3-5件/年 皇室出席:1件/1-2年

Crystal growth?

Crystal:Condensed matter with ordered structure of atoms and molecules

Crystal Growth

最後に

研究室、事務室、学会、共同研究関係者に感謝致します。

家族に感謝、特に妻(亮子)に感謝します。

今後も、九大の特任教授(学術研究員)として研究を継続します。

今後とも、よろしくお願いします。

