

2005前期 月曜 3時限 場所:情報基盤センター3F 多目的講義室

> 担当 青柳 睦 aoyagi@cc.kyushu-u.ac.jp

5月16日(月)

講義の内容,成績評価方針(再々々々々掲)

計算科学の概論

主要なシミュレーション手法の紹介 続き・・量子論的手法・・から.

グリッドの概要
 Gridコンピューティングとは サイエンス分野での利用
 ビジネス分野での利用

■計算科学の概論

■主要なシミュレーション手法

サイエンスGrid NAREGI

■Globus, Unicoreの現状 ■NAREGIミドルウエア概要

■連成計算とその類型化

テーマ 考え中
 GT4の動向に依存・・

講義資料はWebで公開 server-500.cc.kyushu-u.ac.jp

- 計算機の発展と計算科学
- シミュレーション手法の特徴
- シミュレーション手法の紹介
 - 古典系••流体, 構造解析
 - 量子系・・第一原理分子動力学, 量子化学
 - ■連成計算の概観

量子論的手法・例と課題・・

●分子軌道法・・量子化学の1分野 1体近似、平均場近似、それを越えて・・ ●密度汎関数法 エネルギーは全電子密度関数の汎関数 交換相関ポテンシャルの問題 ●量子モンテカルロ法 強相関量子系 ●格子ゲージシミュレーション

分子軌道法

- ●分子軌道:1個の電子は、原子核と他の電子がつくる平均的ポテンシャルの中を運動する・・として求めた波動関数
 - Hartree-Fock:一つの電子配置を仮定し、スピン軌道の反対称化された積で変分最小化.その波動関数から平均ポテンシャルを計算

2電子反発積分の演算量が膨大

Self-consistentに計算

非経験的分子軌道法vs半経験的分子軌道法Gaussian,GAMESS,MOPAC,...

フラーレン分子の分子軌道

Hartree-Fock計算法

出展:南部@分子研

(116 MUL, 31 ADD, 2FUNC)

基底関数 χ の組により、大小の計算粒度が混在

Qx**6*q**3*f(6,t)))/(p*(p+q)**6) (787 MUL, 261 ADD,69 FUNC)

))))/(p+q)**5+(4*PQx*q*(QCx+QDx)*(3+2*q*QCx*QDx)*(15*(p+q)*2*f(3,t)+4*p*PQx*2*q*(5*(p+q)*f(4,t)+p*PQx*2*q*(f(5,t)))))/(p*(p+q)**5)(8*(PAx+PBx)*PQx*(3+q*(QCx*2+4*QCx*QDx+QDx*2))*(15*(p+q)*2*f(3,t)+4*p*PQx*2*q*(5*(p+q)*f(4,t)+p*PQx*2*q*(f(5,t)))))/(p+q)**5+(8*(PAx+PBx)*(QCx+QDx)*(15*(p+q)**3*f(3,t)+30*p*PQx*2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx*2*q*(f(5,t))8*p**3*PQx*6*q**3*f(6,t))))/(p+q)**5+(8*(PAx+PBx)*(QCx+QDx)*(15*(p+q)**3*f(3,t)+30*p*PQx*2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx*2*q*(f(5,t))8*p**3*PQx*6*q**3*f(6,t))))/(p+q)**6+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx*2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*(f(5,t))+8*p**3*

 $\begin{array}{l} +2*q^{*}QCx^{*}QDx)^{*}(((p+q)^{*}f(1,t)^{*}f(1,t)^{*}(1,t)$

 $(\mu\nu \| \lambda\sigma)$ の例

2)// h1, b, f q (p+q)/(8 (rAx+1 bx) (3+2 p TAX 1 bx) (qCX+qbx) (3 (3+2*, (4*PAx*PBx+PBx*2+PAx*2*(1+2*p*PBx*2)))*(3+q*(QCx* b+q)*2)+(2*(3+p*(PAx*2+4*PAx*PBx+PBx*2))*(3+2*q*(4*QCx*QDx))(p*2*q*(p+q)*2)+(4*(3+2*p*(4*PAx*PBx+PBx*2))*(3+2*q*(4*QCx*QDx))(p*2*q*(p+q)*2)+(4*(3+2*p*(4*PAx*PBx+PBx*2))*PQx*(QCx+QDx)*(3+ c+PBx)*(3+2*p*PAx*PBx)*PQx*(3+q*(QCx*2+4*QCx*QDx+QDx*2)) +2*q*(4*QCx*QDx+QDx*2+QCx*2*(1+2*q*QDx*2)))*(3*(p+q)*f(2,t) *2*(1+2*p*PBx*2)))*(3*(p+q)**2*f(2,t)+4*p*PQx**2*q*(3*(p+q)*f(3,t)+p*PQx**2 (p+q)**2*f(2,t)+4*p*PQx*2*q*(3*(p+q)*f(3,t)+p*PQx**2 (p+q)**2*f(2,t)+4*p*PQx*2*q*(3*(p+q)*f(3,t)+p*PQx**2 (p+q)**2*f(2,t)+4*p*PQx*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*P(x*2*q*(3*(p+q)*f(3,t)+p*(x*2*q*(3*(p+q)*f(3,t)+q*(x*2*q*(3*(p+q)*f(3,t)+q*(x*2*q*(3*(p+q)*f(3,t)+q*(x*2*q*(3*(p+q)*f(3,t)+q*(x*(x+q)x*(x*q)))))))))))))))

(参考)

tei(4,4,4,4) = (((3+2*p*(4*PAx*PBx+PBx**2+PAx**2*(1+2*p*PBx**2)))*(3+2*q*(4*QCx*QDx+QDx**2+QCx**2*(1+2*q*QDx**2)))*f(0,t))/(p**2*q*(2)+(4*(3+2*p*(4*PAx*PBx+PBx**2+PAx**2*(1+2*p*PBx**2)))*PQx*(QCx+QDx)*(4+2*q*QCx*QDx)*f(1,t))/(p*q*(p+q))(4*(PAx+PBx)*(3+2*p*PAx*PBx)*(3+

村上先生の2電子積分ボード 1000基底関数~10¹²通りの演算

Two-Electron integrals

密度汎関数理論

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133(1965)

●エネルギー(全電子密度の関数)= 運動エネルギー+Hartree項

+交換相関ポテンシャル

 交換相関ポテンシャル:局所密度近似、密度 勾配補正、運動エネルギー密度、...

- ●Car-Parrinello(1985):電子状態と分子の 運動を同時に計算
 - 第一原理分子動力学法とも呼ばれる
- Tight-binding法、……

量子モンテカルロ法

・変分モンテカルロ法
・拡散モンテカルロ法
・グリーン関数モンテカルロ法
・経路積分モンテカルロ法

シュレディンガー方程式の厳密解

格子ゲージシミュレーション

- ●ゲージ理論を、ゲージ不変性を保ちつつ、
 4次元超立方格子上に定式化(K.Wilson)
- ●代表的なものはQCD simulation
- ●Gauge場(gluon)*U*:リンク(辺)上(SU(3)) fermion場(quark) *ψ*:格子点上
- ●Quenched simulation: fermion自由度を 無視。det(*M*(*U*))を1と見なす
 - ●Gluonに関するMetropolice法
 - •Quark propagator(逆行列)を計算

格子ゲージシミュレーション

Full QCD: det(*M*(*U*))の変化を評価
 確率微分方程式(Langevin方程式)
 分子動力学的手法
 ハイブリッド法

●Quarkはハドロン(陽子、中間子など)の中 に閉じこめられていることが示された

コンピュータの発展と計算科学

- ●ENIACから地球シミュレータまで性能比は・・ 10⁹程度(2005年 IBM Blue/Geneで10¹⁰程度)
- 初期の計算機は事務用に占有され、科学技 術計算はほんの隅っこを利用しているだけで あった
- ●1970年代:スーパーコンピュータの登場

科学技術のための計算機

High performance computersの進歩

「Top500」から予想したペタフロップス

並列計算機の現状

演算性能・・地球シミュレータ(NEC製)が世界第二位

Processor Node数=640 CPU数=5120台 640×640の単段クロスバ結合

ピーク性能=40Tflops

主記憶容量=10TB

外部記憶容量=約670TB

TOP500の計算機アーキテクチュア内訳

TOP500 List for June 2003

現在の主な並列計算機

- •SMP(対称型マルチプロセッサ)
 - メインフレーム, サーバー、科学技術計算
 - SMPのクラスター構成もある
- PC クラスタ
 - 安価な PC を多数結合, スーパーコンピュータの 代用となりうるのか?
- チップ内並列処理
 - スーパースカラ, VLIW, Dual Coreの有効活用
 - -動画像処理,画像生成等

SMP(16~128cpu) のクラスター構成が主流に・・

計算科学はどこへ・・? コンピュータの能力の飛躍的発展. Petaflops will be available soon. 多くの要素からなる系のコンピュータシミュレーション(particles, atoms, molecules, stars, proteins) →全体シミュレーション、連成シミュレーション

- ●それでも現実の系のシミュレーションはできな い(How many atoms in one gram!)
- Computer power is lacking!

→グリッドコンピューティング?

【出典】J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach 3rd Edition, Fig. 5.2

演算よりも「データの移動」が律速(高コスト)

- CPU⇔1次キャッシュ⇔2次キャッシュ⇔
 メモリ⇔バッファ⇔InterConnect⇔
 NIC⇔Network Switch ⇔
 組織内ネットワーク⇔
 Computing-Grid網・・・
- データ移動(帯域幅と遅延)の階層性

連成計算の概観

シミュレーション対象の全体を「複数の部分系に分割」し、部分系の計算途中でお互いのデータを交換しながら全体を解く手法.

部分系Aを解く手法 ⇔ 部分系Bを解く手法

(例)分子軌道計算/分子動力学計算 構造力学計算/分子動力学計算 流体計算/構造力学計算 統計力学計算/分子軌道計算・・・etc

データ交換の頻度とデータ量は、部分系間の依存度、結合の強さにより、 弱連成・・強連成と区別することがある.

分散シミュレーションの形態

■ シミュレータAの出力をシミュレータBの入力へ

■ シミュレータAとシミュレータBでデータ交換をしながら実行

■ シミュレータAがデータベースCを参照しながら実行

✓ MPICH-G またはGridMPI通信@Globus

RISM-FMO連成シミュレーションにおける計算のワークフロー

National Research Grid Initiative

Mediatorによる連成計算方式

Mediatorは、アプリケーション間での高度な意味変換機能をサポートするパッケージ群である。 計算手法の異なるアプリケーション間の物理量変換は、グリッド上でMediatorを介して自動的に 実行されるため、プログラムの修正を最小限に抑えた連成シミュレーションを構築できる。

1. 連成シミュレーションの構築手順

Mediatorの提供するAPIを用いてレガシーコードをコンポーネント化。グリッド標準の通信フレームワーク上で連成化。

②コンパイル及びMediatorライブラリをリンク③アプリケーションとMediatorをGridMPIジョブとして実行

2. グリッド連成ミドルウェア Mediatorの特徴機能

 ・高度な意味変換機能
 球内相関、矩形内相関、第一近接、最近接
 ・離散点位置の高速・並列探索
 粒子法、差分法、有限要素法
 ・標準通信ライブラリへの対応 MPICH、Score、MPICH-G2、GridMPI

National Research Grid Initiative

Mediatorによる離散点データ交換

グリッド連成ミドルウェア(Mediator)は高度セマンティック変換を サポートすることによって、指定された相関関係にある離散点上 の物理量を交換する

GridMPIによるグリッド連成ミドルウェアの応用

グリッド連成ミドルウェア(Mediator)を開発し、複数のナノアプリケーション (RISM, FMO)をグリッド環境下で接続し、超巨大水分子を対象に溶液中 の電子構造を計算

National Research Grid Initiative

RISM-FMO連成計算による大規模計算(水溶液中のリゾチウム)

リゾチウムよる溶菌作用を対象に、RISM-FMO連成計算を用いて分子レベルのメカ ニズムを解析、連成計算の有効性を確認した。

<u>1. リゾチウムの溶菌作用のメカニズム</u>

2. RISM-FMO計算による水溶液中でのプロトン移動の解析

- 1)細胞壁を形作る糖の一種(ペプチドグリカン (図2))の結合を加水分解(切断)する
 2)上の加水分解は活性部位(グルタミン酸35) からペプチドグリカンへのプロトン移動 により起こる
- 1)分子動力学計算によりペプチドグリカンを結合したリゾチウムの 水和構造を得た(図3)
 2)この構造に基づきRISM-FMO連成計算により水溶液中でのプロトン
- 2) この構造に基つきRISM-FMO連成計算により水溶液中でのフロトン 移動について調べた結果、プロトンの移動に伴い、ペプチドグリカン の電子構造に大きな変化が認められた(図4-A, B)

National Research Grid Initiative

Structure and functionality of Lysozyme

A catalytic mechanism of hydrolysis in Lysozyme is analyzed, in which proton transfer leads to bacteriolysis in peptidoglycan of bacterial cell wall.

Lysozyme

National Research Grid Initiative

Peptidoglycan

Lysozyme functionality in solvent

Whole electronic structure of Lysozyme in solvent is analyzed by using RISM-FMO and electronic density changes according to the position of proton transfer.

Proton at Glu35

Proton at Glycosidic O

National Research Grid Initiative

マクロな医療用生体計算での見積もり(例)

- ボクセルモデルによる人体モデリング
- 理研東大で2009年度末に開発
- 生体膜の取り扱いが重要
 - 生体膜0.01mmをボクセル表現すると
- 人体全身
 - 2 m x 0.75 m x 0.5 mと仮定
 - 平均1mm:750M点(240GW)
 - メモリーは十分
 - 実効100MFLOPSで1週間、速度は速くする必要あり
 - 平均0.25mmだと:48G点(15TW)
 - 実効100Mで64週間(約1年)、3日/ES実効10T
 - 診療用途ではこの位の計算が1時間、よって実効1P
 - 0.01mm:240PW、アダプティブメッシュで1/100、数PW、 計算速度実効1Pで30日

Source: 姫野博士@理研

もの作り分野の見積もり(例)

 現状の計算メッシュ生成の問題 から今後はボクセルベースの解 析へと進む

- 問題はボクセルサイズをどこまで 扱えるか
- 現在、ものつくりでの最大の問題 は自動車の衝突解析
- スポット溶接部分を考えると最小 ボクセル0.1mm
 - ー 車サイズ5mx2mx2mから20T
 ボクセル
 - メモリー: 1PW、現状の100億倍の計算量
 - アダプティブで1/100の演算量と すると実効1PFで数時間

- 第三の科学手法としてシミュレーションは研究開発現場で重要な役割を果たしている.
- ■構成的手法(ミクロの要素からマクロを理解)
- ■現実の物理は連成・複合系
 - Multi-Scale, Multi-Physics Simulation ~.