量子化学

原田

○講義概要

第1回 概論、量子化学の基礎

第2回 演習1

第3回 分子の電子状態の計算法(Hückel法)

第4回 演習2

第5回 近似を高めた理論化学計算法

第6回 演習3

第7回 試験

【2】分子の電子状態の計算法(Hückel法)

◎ 到達目標:分子軌道計算手法の物理的意味を把握する.計算法や術語に慣れる.

◎ なぜ、Hückel法か

- ・手計算で解けるから!
 - 今日では電子計算機利用が常識、プログラムも整備されているので、物理的意味を知らなくても結果が出てしまう. 結果のみを見ていると、その得られてくる過程に対する理解が欠け、物理的意味を忘れた結論に導かれるおそれがある. 是非一度、手計算を行って、物理的意味をしっかり把握してから、計算機出力を眺めるように. (参考書2の71頁より)
- ・簡単だが、考え方の基本が分かる!
- ・簡単だが、解き方の作業手順が分かる!

量子化学計算の目的: 分子の性質を知る!

分子構造

結合距離、結合角、Walsh則・・・軌道の性質と分子の形、超共役

分子物性

イオン化ポテンシャル、電子親和力、 酸化還元電位、双極子能率

化学反応

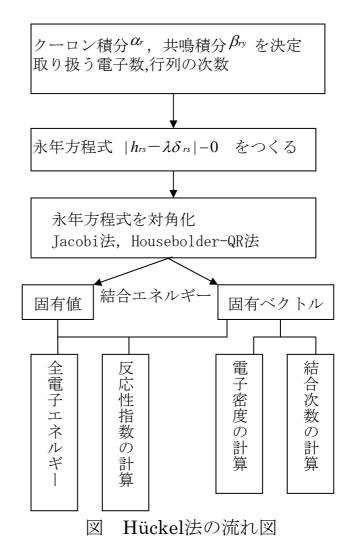
電子密度、HOMO、LUMO、反応性、 共鳴エネルギーと芳香族性

光や磁場との相互作用

吸収・発光スペクトル、ESR・NMRスペクトル

分子内・分子間に働く力

回転ポテンシャル、分散力、水素結合、 熱力学関数



・・・・など、など.

◎ 単純LCAO MO法(再. 2原子分子を例に)

ハミルトニアン:
$$H = h(r_1) + h(r_2)$$

1電子ハミルトニアンh = (電子の運動エネルギー) + (核、他の電子の作る平均場における位置エネルギー)

原子軌道 $AO: \chi_a, \chi_b$

分子軌道MO: $\varphi = C_a \chi_a + C_b \chi_b$ cf. linear combination of AO

1電子波動方程式は、 $h\varphi = \varepsilon \varphi$

** エネルギー
$$\varepsilon = \frac{\int \varphi h \varphi d\tau}{\int \varphi \varphi d\tau} = \frac{C_a^2 h_{aa} + 2C_a C_b h_{ab} + C_b^2 h_{bb}}{C_a^2 + 2C_a C_b S_{ab} + C_b^2}$$

を最小に!

エネルギー
$$\varepsilon = \frac{\int \varphi h \varphi d\tau}{\int \varphi \varphi d\tau} = \frac{{C_a}^2 h_{aa} + 2{C_a}{C_b} h_{ab} + {C_b}^2 h_{bb}}{{C_a}^2 + 2{C_a}{C_b} S_{ab} + {C_b}^2}$$
 を最小に.

$$\frac{\partial \mathcal{E}}{\partial C_a} = \frac{\partial \mathcal{E}}{\partial C_b} = 0$$

$$\rightarrow$$
 永年方程式 (secular equation)
$$\begin{vmatrix} h_{aa} - \varepsilon & h_{ab} - S_{ab} \\ h_{ab} - S_{ab} & h_{bb} - \varepsilon \end{vmatrix} = 0$$

を解き ε を求め、引き続き C_a/C_b を求める

$$h_{aa} = \int \chi_a h \chi_a d$$
他 クーロン積分(常に負)
$$h_{ab} = \int \chi_a h \chi_b d\tau$$
 共鳴積分 (resonance integral, 重なり積分に比例)
$$S_{ab} = \int \chi_a \chi_b d\tau$$
 重なり積分

$$\varepsilon_{+} = \frac{h_{aa} + h_{ab}}{1 + S_{ab}} \qquad \frac{C_{a}}{C_{b}} = 1 \quad \text{規格化して}, \qquad \varphi_{+} = \frac{\chi_{a} + \chi_{b}}{\sqrt{2 + 2S_{ab}}}$$

$$\varepsilon_{-} = \frac{h_{aa} - h_{ab}}{1 - S_{ab}} \qquad \frac{C_{a}}{C_{b}} = -1 \quad \text{規格化して}, \qquad \varphi_{-} = \frac{\chi_{a} - \chi_{b}}{\sqrt{2 - 2S_{ab}}}$$

 \rightarrow 基底状態は φ_+ (: h_{ab} < 0)なので、反対称化全波動関数は、

$$\Phi = \frac{1}{2 + 2S_{ab}} \{ \chi_a(1) + \chi_b(1) \} \{ \chi_a(2) + \chi_b(2) \} \frac{\alpha(1)\beta(2) - \alpha(2)\beta(1)}{\sqrt{2}}$$

特別な場合(分子軌道を作らない)

- ・重なり積分が χ_a , χ_b の対称性により 0 になる \rightarrow 共鳴積分も 0
- \rightarrow $C_a = 1$, $C_b = 0$ \$\$\frac{1}{2}U\forall C_a = 0\$, $C_b = 1$
- ・ $h_{aa} >> h_{bb}$ のとき \rightarrow $C_a \sim 1$, $C_b \sim 0$ および $C_a \sim 0$, $C_b \sim 1$

◎芳香族、共役系化合物の電子状態 ==== ここからHückel法 ==

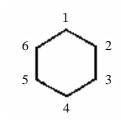
- \bigcirc <u> π 電子近似</u>(π electron approximation): π 電子系を他の電子(σ 系)と分離して扱う方法.
- 単純Hückel法: π電子近似の中で最も近似の粗い定性的(経験的)MO法 大前提: 、全ハミルトニアンは1電子ハミルトニアンの和.
 - ・非隣接軌道間の共鳴積分を無視 $H_{ij}=0$ (|i-j|>1)
 - ・隣接軌道間の共鳴積分は等しい H_{ii} = β (|i-j|=1)
 - ・重なり積分は無視

$$S_{ii}=0$$
 $(i\neq j)$

cf.
$$H_{ii} = \alpha$$

○ 単純Hückel法の計算例 1 : ベンゼン

$$\varphi = \sum_{i=1}^{6} C_i \chi_i$$
 としてエネルギーを最小化.
 $\lambda = (\varepsilon - \alpha)/\beta$ とおくと次式を得る.



$$C_2 + C_6 = \lambda C_1$$
 $C_1 + C_3 = \lambda C_2$ $C_2 + C_4 = \lambda C_3$
 $C_3 + C_5 = \lambda C_4$ $C_4 + C_6 = \lambda C_5$ $C_1 + C_5 = \lambda C_6$

永年方程式は、
$$(\lambda^2 - 4)(\lambda^2 - 1)^2 = 0$$

規格化 $(\sum C_i^2 = 1)$ して整理すると次表のようになる.

・計算結果の見方

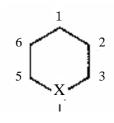
λ_i	1	2	3	4	5	6
-2.0000	+0.4083	-0.4083	+0.4083	-0.4083	+0.4083	-0.4083
-1.0000	+0.5774	-0.2887	-0.2887	+0.5774	-0.2887	-0.2887
-1.0000	0	+0.5000	-0.5000	0	+0.5000	-0.5000
+1.0000	+0.5774	+0.2887	-0.2887	-0.5774	-0.2887	+0.2887
+1.0000	0	+0.5000	+0.5000	0	-0.5000	-0.5000
+2.0000	+0.4083	+0.4083	+0.4083	+0.4083	+0.4083	+0.4083

----- α -2 β

注: $\epsilon = \alpha + \lambda \beta$ 、 α <0、 β <0 なので、 λ が大きいほどエネルギーは低い.

○単純Hückel法の計算例2: ヘテロ原子を含む場合

手続きはベンゼン同様.



$$\varphi = \sum_{i=1}^{6} C_i \chi_i$$

 $\varphi = \sum_{i=1}^{6} C_i \chi_i$ としてエネルギーを最小化.

$$\lambda_{x} = (\varepsilon - \alpha)/\beta - \delta_{x}$$
 $\lambda = (\varepsilon - \alpha)/\beta - \delta$ とおくと次式を得る.

$$lC_2 + lC_6 = \lambda_x C_1$$
 $lC_1 + C_3 = \lambda C_2$ $C_2 + C_4 = \lambda C_3$

$$lC_1 + C_3 = \lambda C_2$$

$$C_2 + C_4 = \lambda C_3$$

$$C_3 + C_5 = \lambda C_4$$
 $C_4 + C_6 = \lambda C_5$ $lC_1 + C_5 = \lambda C_6$

$$C_4 + C_6 = \lambda C_5$$

$$lC_1 + C_5 = \lambda C_6$$

 δ , δ , l などのパラメータは別に与えられる

◎ 部分電子密度、結合次数(Bond order)

分子軌道 $\varphi_i = \sum C_{i\mu} \chi_\mu$ 、軌道 φ_I を占める電子数を n_i (1か2)とする

原子軌道 χ_{μ} の π 電子密度 $P_{\mu\mu}$ は、

$$P_{\mu\mu} = \sum_{i}^{OCC} n_i C_{i\mu}^2$$

原子軌道 χ_{μ}, χ_{ν} 間の π 結合次数 $P_{\mu\nu}$ は、 $P_{\mu\nu} = \sum_{i}^{occ} n_{i} C_{i\mu} C_{i\nu}$

$$P_{\mu\nu} = \sum_{i}^{OCC} n_i C_{i\mu} C_{i\nu}$$

○ 電子密度の計算例: フッ化ビニルの場合

$$F^{1}_{C} = C^{3}_{H}$$

単純Hückel法の計算手続きは同じ. ただしF原子上の電子も考える. 得られる式は、

$$1.25C_2 = (\lambda - 2.1)C_1$$

$$C_2 = \lambda C_3$$

$$1.25C_2 = (\lambda - 2.1)C_1$$
 $C_2 = \lambda C_3$ $1.25C_1 + C_3 = (\lambda - 0.2)C_2$

永年方程式は
$$\lambda^3 - 2.3\lambda^2 - 2.1425\lambda + 2.1 = 0$$

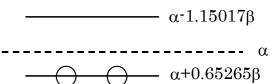
固有値、固有関数の計算結果を書き 下すと、右の準位図に対応して、

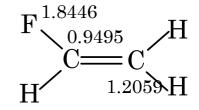
$$\varphi_1 = -0.86029 \chi_1 - 0.48806 \chi_2 - 0.17160 \chi_3$$

$$\varphi_2 = 0.42686 \chi_1 - 0.49425 \chi_2 - 0.75730 \chi_3$$

$$\varphi_3 = -0.27873\chi_1 + 0.72475\chi_2 - 0.63012\chi_3$$

電子(4個)がエネルギーの低い軌道に 2個ずつ詰まるとして、電子密度を計算





◎ 拡張Hückel法: 全価電子と対象とする粗い近似の分子軌道法 (1963年、R. Hoffmann)

特徴: 重なり積分の計算が必要でやや複雑. 炭化水素やその置換体に有効

- ·単純LCAOMO近似
- ・<u>すべての重なり積分を無視しない.</u> $S_{ij} \neq 0$
- ・クーロン積分 H_{ii} = $-I_{i}$ (原子軌道のイオン化ポテンシャル)
- 共鳴積分 $H_{ij} = KS_{ij} (H_{ii} + H_{jj})/2$, K=1.75
- ・分子軌道の規格化
- atomic population (電子密度に対応) とatomic bond population (結合次数に対応)
- atomic population

$$M_X = \sum_{r}^{onX} N_r$$
, $\uparrow z \uparrow z \downarrow$ $N_r = 2 \sum_{j}^{occ} \sum_{s} C_{jr} C_{js} S_{rs}$

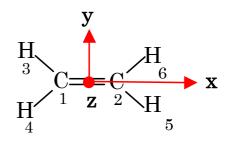
• atomic bond population $N_{XY} = \sum_{r}^{onX} \sum_{s}^{onY} N_{rs}$, $\uparrow z \uparrow z \downarrow$ $N_{rs} = 4 \sum_{j}^{occ} C_{jr} C_{js} C_{rs}$

○拡張Hückel法の計算例:

エチレン(6核16電子系)を12電子12軌道系として扱う

1. 原子の座標(単位A)

原子	X	Y	Z
C 1	-0.67	0	0
\mathbf{C}_2	0.67	0	0
\mathbf{H}_3	-1.205	0.926647	0
\mathbf{H}_4	-1.205	-0.926647	0
H_5	1.205	-0.926647	0
\mathbf{H}_{6}	1.205	0.926647	0



- 2. クーロン積分(炭素 2s, $2p_x$, $2p_y$, $2p_z$ 、水素 1s) $H_{SC,SC}=-21.43~{\rm eV}$, $H_{PC,PC}=-11.42~{\rm eV}$, $H_{SH,SH}=-13.60~{\rm eV}$
- 3. 核電荷(重なり積分計算のため必要) $Z_{\rm C}$ = 3.25, $Z_{\rm H}$ = 1.00

4. 軌道エネルギーと各原子軌道の係数(計算結果)

表 拡張Hückel法によるエチレンの分子軌道

 軌道エネルギー	1	2	3	4	5	6 *	7 * *
(eV)	-27.04	-20.71	-16.23	-14.45	-13.75	-13.24	-8.25
S _{C1}	0.484	0.385	0	-0.073	0	0	0
X _{C1}	0.024	-0.173	0	-0.530	0	0	0
Y_{C1}	0	0	0.385	0	-0.449	0	0
Z _{C1}	0	0	0	0	0	0.627	0.828
S _{C2}	0.484	-0.385	0	-0.073	0	0	0
X _{C2}	-0.024	-0.173	0	0.530	0	0	0
Y_{C2}	0	0	0.385	0	0.449	0	0
Z_{C2}	0	0	0	0	0	0.627	-0.828
H ₃	0.089	0.239	0.264	0.186	-0.340	0	0
H ₄	0.089	0.239	-0.264	0.186	0.340	0	0
H ₅	0.089	-0.239	-0.264	0.186	-0.340	0	0
H ₆	0.089	-0.239	0.264	0.186	0.340	0	0

^{*}最高被占軌道 **最低空軌道

5. Atomic orbital population (N_r) \succeq atomic population (M_X)

$$N_{\rm S,C} = 1.197, N_{\rm px,C} = 0.981, N_{\rm py,C} = 1.067, N_{\rm pz,C} = 1.000, N_{\rm H} = 0.878$$

$$M_{\rm C} = 4.244, M_{\rm H} = 0.878$$

6. Atomic orbital bond population($N_{r,s}$)

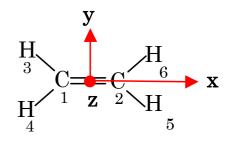
	S _{C1}	X _{C1}	Y _{C1}	Z _{C1}
S _{C2}	0.16	0.202	0	0
X_{C2}	0.202	0.327	0	0
Y_{C2}	0	0	-0.058	0
Z_{C2}	0	0	0	0.425
H_3	0.283	0.129	0.414	0
H_4	0.283	0.129	0.414	0
H_5	-0.043	-0.036	-0.017	0
H ₆	-0.043	-0.036	-0.017	0

7. Atomic bond population(N_{XY})

$$N_{\rm CC} = 1.259, N_{\rm CH} = 0.826$$

炭素 $2p_x$ 軌道間の p_{σ} - p_{σ} 結合は、 p_{π} - p_{π} 結合より若干弱い.

炭素の2p_y軌道は C-C結合に寄与す るよりC-H結合形 成に使われる.



◎ Hückel法と理論予想:

Hückel法の範囲で問題の本質が理解できること 半定量的に予想可能な幾つかの問題

1)イオン化ポテンシャル、電子親和力

仮定: イオンの1電子ハミルトニアン は中性分子と同じ (大きい分子で悪くない近似)

イオン化ポテンシャル

$$I_P = - \epsilon_{\text{ho}}$$

電子親和力

$$E_{\rm A} = - \epsilon_{\rm lv}$$

電気陰性度(Mulliken)

$$X_{\Delta} = [I_{p}(A) + E_{\Delta}(A)]/2$$

	イオン化ポテンシャル					 電子親和力		
化合物	π電子の最高	計算値(I) ^{b)}	計算値(Ⅱ) ^{e)}	計算値 ^{e)}	実測値	π電子の最低	計算値 ^{e)}	推定値 ^{d)}
	被占軌道 ^{a)}	(eV)	(eV)	(eV)	(eV)	空軌道	口开吧	(eV)
ベンゼン	$\alpha + \beta$	9.55	9.53	12.80	9.52	$\alpha - \beta$	8.35	2.19
ナフタリン	α +0.6180 β	8.60	8.63	12.07	8.68	α -0.6180β	9.34	2.59
フェナントレン	α +0.6050 β	8.57	8.50	12.02	8.62	α -0.6050β	9.31	2.63
アントラセン	α +0.4140 β	8.06	8.11	11.64	8.20	α -0.4140β	9.84	3.11
ナフタセン	α +0.2950 β	7.80	7.81	_	7.71	α -0.2950β	_	3.71
3、4ーベンズ フェナントレン	α +0.5680 β	8.48	8.36	_	8.40	α -0.5680β	_	2.82

- a) Hückel法で計算したもの
- b) $\alpha = -7.06 \,\mathrm{eV}$, $\beta = -2.49 \,\mathrm{eV}$ とおいて得た値
- c) この節の最後の(ii)の方法でカチオン、中性分子のエネルギーを計算して求めた結果²⁾
- d) Matsenの推定値³⁾
- e) 拡散Hückel法による計算

不都合:メチル、アリル、ベンジルラジカルで同一のIp.

ラジカルで $I_{\mathbf{p}} = E_{\mathbf{A}}$.

改良法: 重なり積分の考慮.繰り返し計算のSCF法

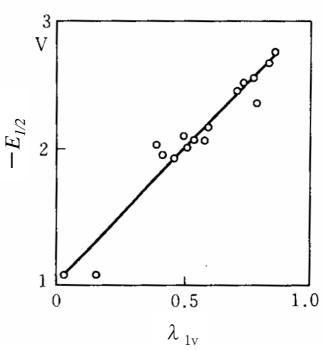
2) 酸化還元電位(電気化学データ)

cf. 実験的には、半波還元電位 $E_{1/2}$

cf. キノンとヒドロキノンの可逆系

仮定: 類似化合物で溶媒和、エントロピー等の効果は同じ

$$E_{1/2} = -a \times \varepsilon_{LUMO} + b$$

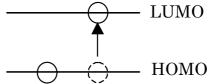


不飽和炭化水素のE12と最低空準位の係数

3) 励起エネルギーと電子スペクトル

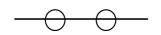
電子スペクトルで最長波長の強い吸収(通常π-π*遷移)の波 長と振動子強度(定性的)

振動数
$$v = (\varepsilon_j - \varepsilon_i)/h$$



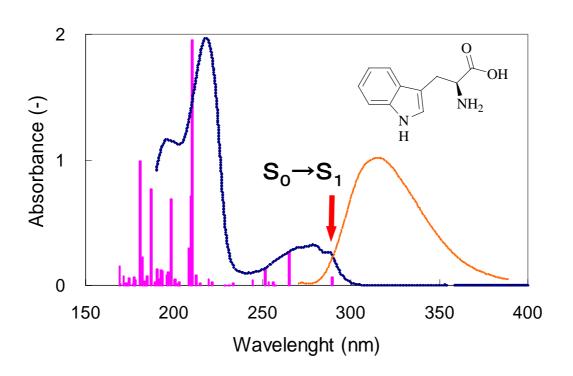
成功例:

芳香族化合物の吸収波長. 共役化合物への置換基効果 分子内の電荷移動吸収帯

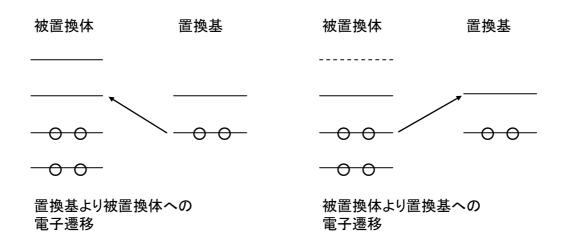


 分子	吸収波長(Å) ^{a)}	$\varepsilon_{m+1} - \varepsilon_m^{b)}$	励起エネルギー ^{e)}	吸収波長(Å) ^{e)}	吸収波長(Å) ^{d)}
	(実験値)	(-β単位)	(eV)	(計算値)	(計算値)
ベンゼン	2080	2000	4.45	2786	1700
ナフタレン	2750	1236	2.64	4696	2750
アントラセン	3750	0.828	1.80	6890	4110
ナフタレン	4740	0.588	_	<u> </u>	5780
ベンタセン	5810	0.438	_	_	7760

トリプトファンの吸収・蛍光スペクトル: 測定値と計算値



測定値は、pH7バッファー水溶液. 計算値は、密度汎関数法 B3LYP による孤立分子. (Gaussian03, 基底関数 6-31+G(d)) 成功例:分子内の電荷移動吸収帯



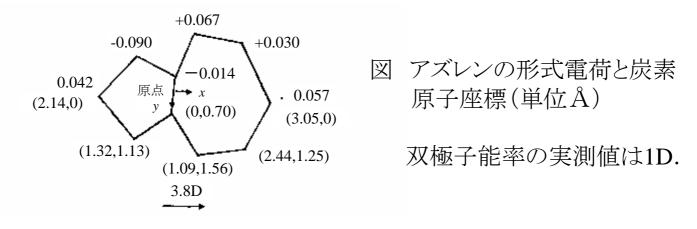
不都合: スピン多重度が異なってもエネルギーは一致 (重心を与えると解釈) 例えば、一重項遷移と三重項遷移のエネルギー が一致(ベンゼン)

4) 双極子能率(双極子モーメント)

- ・電気双極子能率: 分子構造論の一大分野.電荷の偏りを表す
- ・1D (debye) = 3.33564×10⁻³⁰Cm (=電荷素量×20.8pm.水の半径: 138~155pm)

定義:
$$\mu = \sum_{i} \eta_{i} \mathbf{r}_{i} \quad (古典力学)$$
$$\mu = e \sum_{\mu} Z_{\mu} \mathbf{R}_{\mu} - e \int \Phi^{*} \sum_{i} \mathbf{r}_{(i)} \Phi d\tau \quad (量子力学)$$

実験値との比較:



5) Walsh則...軌道の性質と分子の形

いちいち計算しなくても分子の形が推定できる一般則を与える (理論の利点)

6) 共鳴エネルギーと芳香族性

共鳴エネルギー:

π電子の非局在性による安定化エネルギー、非局在化エネルギー、実験的には、水素添加による還元熱、酸塩基解離定数などから.

芳香族性:

熱安定性、求電子的置換反応、スペクトル特性 適当な数のπ電子が、適当な場所に共役している化合物の属性

適当な数: Hückelの4N+2規則

適当な場所:一応平面と考えられる5,6,7員環、

その誘導体、縮合物

7) 超共役

メチル基が-C≡H₃的な三重結合的性質を持ち電子が一部π電子系と共役する振る舞い

8) Hammettの規則、シグマ定数(置換基定数、σ) (cf. 反応性指数)

> 芳香族化合物の反応性(速度定数、平衡定数)に及ぼす 置換基の影響(経験則)

$$\log(k/k_0) = \rho\sigma$$

(ρ: 反応定数=反応、条件に特有な定数)

σは、置換基と置換位置にのみ依存する"置換基定数".