
1

1

High-Performance Computing Servers Seminar
for Foreign Students

November 2, 2005
Hirofumi Amano

Computing and Communications Center
Kyushu University

2

About This Seminar

This seminar is:
for those who are not good at Japanese;
designed to give a “crash-course” on how to use our
High-Performance Computing Servers.

This seminar is NOT:
a UNIX seminar;
a programming seminar;
a program tuning seminar.

After this seminar:
you will be able to run your programs on our HPC
Servers in interactive sessions or in batch jobs.

3

Other Useful Materials

“High-Performance Computing Servers (IBM p5)
First-Step Guide”

http://isabelle.cc.kyushu-u.ac.jp/~amano/ccc/p5/
English documents provided by IBM and other
software vendors

Chapter 2 of the above guide will be a good place to
start your search.

4

How to Obtain Your Accounts

For this seminar, you are given a temporary
account.
After this seminar:

Please consult your advisor (professor/associate
professor) for your permanent account.
In some laboratories, your advisor may have already
obtained accounts for the lab’s students.

When you need a new account:
We recommend you to apply for your account with the
help of your advisor.
This is because our HPC service is NOT FREE and the
payment plan is not yours but your advisor’s.

2

5

Today’s Schedule
Basics

System Overview
Performance
Operation Details
Accessing the HPC Servers

Compiling, Linking and Executing a Program
Compilation Commands and Their Options
Compilation Options for Parallel Programs
MPI parallel programs

Batch Jobs for Large-Scale Computations
How the Batch System Works
Job Classes and Their Limits
Job Command Files
How to Monitor and Control Your Batch Jobs

ExerciseExercise

ExerciseExercise

6

Today’s Schedule
Basics

System Overview
Performance
Operation Details
Accessing the HPC Servers

Compiling, Linking and Executing a Program
Compilation Commands and Their Options
Compilation Options for Parallel Programs
MPI parallel programs

Batch Jobs for Large-Scale Computations
How the Batch System Works
Job Classes and Their Limits
Job Command Files
How to Monitor and Control Your Batch Jobs

7

Basics

8

System Overview (1)
High-Performance Computing Servers
IBM eServer p5 Model 595 (backend servers)
(AIX operating system)

POWER5 1.9GHz×64CPU・512GB memory …1
POWER5 1.9GHz×64CPU・256GB memory …5
POWER5 1.9GHz×32CPU・128GB memory …1

User Front-End
IBM eServer p5 Model 570
(AIX operating system)

POWER5 1.9GHz×16CPU
・64GB memory …1

Disk Arrays
IBM TotalStorage FAStT900
Storage Server

RAID-5 Effective Capacity: 51TB
IBM eServer p5 Model595

3

9

10Gbps Ethernet

User
Front-End

1Gbps Ethernet

64CPU
・

512GB

SAN switch SAN switch

Disk Array

×3 ×3 ×3 ×3

Storage Area Network
(SAN) on 200MB/sec
Fibre Channel

64CPU
・

256GB

64CPU
・

256GB

64CPU
・

256GB

64CPU
・

256GB

64CPU
・

256GB

32CPU
・

128GB

System Overview (2)

Back-End Servers

（51TB, RAID5）

10

Performance (1)

Theoretical Peak Performance of a Single CPU:
7.6GFLOPS

7,600,000,000 floating-point operations per second!
Single-CPU Performance (SPEC Benchmark)

Parallel Performance（SPEC OMPL2001 base）
19761793Intel Pentium4 3.8GHz

18081456Fujitsu SPARC64V 2.16GHz

26751535Intel Itanium2 1.6GHz

25851392IBM Power5 1.9GHz

SPECfp2000 baseSPECint2000 baseCPU

SPARC64V 1.3GHz x 128

Itanium2 1.6GHz x 64

Power5 1.9GHz x 64

CPU

262140Fujitsu HPC2500

507602SGI Altix 3700

620741IBM p5 model 595

SPECompL2001 baseMachines

11

Performance (2)

Single-CPU Performance Measured by More
Realistic Programs

Sparse Matrix-Vector Product
(100,000 dimensions, containing 1,000,000 non-zero

elements)
IBM Power5 1.9GHz 0.009 sec
Intel Itanium2 1.5GHz 0.012 sec
Intel Xeon 3.2GHz 0.040 sec

Dense Matrix Product (2,000×2,000)
IBM Power5 1.9GHz 16.57 sec
Intel Itanium2 1.5GHz 11.23 sec
Intel Xeon 3.2GHz 34.61 sec

12

System Configuration

User Front-End
Accessible in an interactive session

Backend Servers
Not accessible in an interactive session
Available only for batch jobs

Files

Back-End Servers

kyu-cc.cc.kyushu-u.ac.jp

batch
jobs

... User Front-End

Your own PC

4

13

System Operation Details

Operating Hours
In principle, 24 hours a day
Regular Maintenance: AM5:00～PM0:30 on
Wednesdays

Service will be continued when no maintenance is required.
Examples of other service discontinuities (to be
announced each time):

Winter holidays around the new year’s day
A few days around the end of the fiscal year

For more details on the system operations:
http://www.cc.kyushu-u.ac.jp/scp/ (in Japanese)
For questions or requests, contact:

request@cc.kyushu-u.ac.jp

14

The C&C Center

Accessing the User Front-End (kyu-cc) (1)

Logging in
SSH (Secure Shell) software must be installed.

Windows: Putty or TTSSH
MacOS: MacSSH
UNIX: OpenSSH

Conventional telnet access from outside kyu-cc is
disabled.

Internet

Your Lab.

15

Accessing the User Front-End (kyu-cc) (2)

Uploading/downloading your files
SFTP (Secure FTP) capability is required.

Windows: WinSCP3
MacOS: MacSFTP
UNIX: sftp command (included in the OpenSSH package)

Conventional FTP access is disabled.
SCP access from outside kyu-cc is also disabled.

16

Download Sites for Client Software

Windows
Putty
http://www.chiark.greenend.org.uk/~sgtatham/putty/
TTSSH
http://sourceforge.jp/projects/ttssh2/
WinSCP3
http://winscp.net/

MacOS
MacSSH and MacSFTP
http://pro.wanadoo.fr/chombier/

5

17

In Your First Session…

You must change the initial password.
In the first session, the system will ask you to change
the password.

Enter the old (initial) password once, and enter your new
password twice.
The session will be terminated after changing the password.
Try the next and all the later sessions with the new password.

File uploading/downloading is allowed only after
you change the initial password.
This restriction applies to both:

the temporary account for today;
the permanent account you will use later.

18

In Your Later Sessions…

You must login to AIX again with your new
password.
Do not forget your password.

19

After You Logged in (TTSSH):

prompt
(You can change
this format for
your taste.)

This is where you enter
your command to the
computer.

Messages from the
AIX.

20

When You Finish Your Work of the Day...

Do not forget to log out.
“exit” command will close the interactive session
safely.

kyu-cc% exit

This will make sure that no process remains
after the session.
(Your batch jobs will stay intact even after
logging off.)

6

21

Today’s Schedule
Basics

System Overview
Performance
Operation Details
Accessing the HPC Servers

Compiling, Linking and Executing a Program
Compilation Commands and Their Options
Compilation Options for Parallel Programs
MPI parallel programs

Batch Jobs for Large-Scale Computations
How the Batch System Works
Job Classes and Their Limits
Job Command Files
How to Monitor and Control Your Batch Jobs

22

Compiling, Linking and
Executing a Program

First, we learn how to compile, link and execute a
program in interactive sessions.

23

Sequential and Parallel Programs

Sequential Programs:
Designed and coded for a single CPU
Executable on a single CPU

Parallel Programs:
Executable codes on multiple CPUs
Methods to obtain executable parallel code:

Automatic Parallelization (no source modification required)
OpenMP (slight modification required)
MPI (extensive modification required)
Hybrid (auto-parallel + MPI, OpenMP + MPI)

See
Appendix for
more details.

To exploit the potential (capacity and
performance) of our HPC Servers, parallel
programs are important.

24

Basic Compilation Commands

Other Commands
xlc ANSI C89-Complient C Programs
xlf90 Fortran90 programs having an extension “.f”
xlC C++ Programs

A dedicated command for each parallelization
method

mpf90_rmpf90f90_rf90Fortran90

mpf77_rmpf77f77_rf77Fortran77

mpcc_rmpcccc_rccC

HybridMPIAuto-Parallel/
OpenMP

Sequential
(single CPU)

Language

7

25

Compiling a Sequential Program

Compilation Command Format

Samples
The compilation command will depend on your choice
of the programming language (see Slide #24).

compile_command options source_program

kyu-cc% f90 example.f90

kyu-cc% f90 –o example example.f90

This option will change the name of the
executable code file into “example”.

This will create a file
“a.out” for the
executable code.

26

Executing a Sequential Program

Execution Command Format

Samples
location_of_executable_file

kyu-cc% ./example

kyu-cc% ./a.out

“.” indicates the current directory.
“./example” means “the file example in the current directory”.

This will execute the file
“a.out” in the current
directory.

This will execute the file
“example” in the
current directory.

27

Compilation Options

Directions given to the compiler for controlling the
compilation specifics

Some options are common to the programming
languages.
Other options are specific to individual languages.

Each option starts with “-”.
Some options may have subsequent parameters.
Examples:

-o filename-c

28

Basic Compilation Options for Fortran

(Together with optimization option -O3, -O4, or -O5) Create
an executable/object code which preserves the original
execution order of operations specified in the source.

-qstrict

Try the deepest optimizations. -O5

Apply further optimizations in addition to those caused by -O3. -O4

Apply deeper optimizations such as changing the execution
order of operations. This may cause some side effects.

-O3

Apply basic optimizations only. -O

Compile the file as a fixed-format Fortran source program. -qfixed

Compile the file as a free-format Fortran source program. -qfree

Store the output (executable or object) into the file specified by
filename, instead of the default (*.o or a.out).

-o filename
Create an object file instead of an executable file. -c

8

29

Basic Compilation Options for C/C++

(Together with optimization option -O3, -O4, or -O5) Create an
executable/object code which preserves the original execution
order of operations specified in the source.

-qstrict

Try the deepest optimizations. -O5

Apply further optimizations in addition to those caused by -O3. -O4

Apply deeper optimizations such as changing the execution
order of operations. This may cause some side effects.

-O3

Apply basic optimizations only. -O

Link mathematical functions in math library. This option must
be specified at the end of the command line.

-lm

Store the output (executable or object) into the file specified by
filename, instead of the default (*.o or a.out).

-o filename

Create an object file instead of an executable file. -c

30

Most Recommended Optimization Options

In most cases, the following compiler options are
expected to give you a sufficient performance
improvement.

General Notes on Optimization
A higher (deeper) optimization requires a longer
compilation time.
-O3 < -O4 < -O5

A higher optimization may not always give you a faster
executable code.
Optimization may cause side effects in the computation
results.

To avoid such side effects, use “–qstrict” option.

-O3 –qarch=pwr5 –qtune=pwr5

31

Automatic Parallelization Option

To make the compiler create a parallel executable
code from a sequential source program:

The compilation command must be one with “_r”
at the end of the command name.

kyu-cc% cc_r –qsmp=auto –o example example.c

kyu-cc% f90_r –qsmp=auto –o example example.f90

kyu-cc% f77_r –qsmp=auto –o example example.f

–qsmp=auto

32

OpenMP Compilation Option

To make the compiler create a parallel executable
code from a OpenMP source program:

The compilation command must be one with “_r”
at the end of the command name.

kyu-cc% cc_r –qsmp=omp –o example example.c

kyu-cc% f90_r –qsmp=omp –o example example.f90

kyu-cc% f77_r –qsmp=omp –o example example.f

–qsmp=omp

9

33

Executing a Thread-Parallel Program (1)

A parallel program made by auto-parallel or
OpenMP runs on multiple threads within a single
process.

thread
auto-parallel/
OpenMP
executable
code

If there are enough number of CPUs available, each thread runs
on a CPU. Otherwise, some of them may run on the same CPU.

process

34

Executing a Thread-Parallel Program (2)

The number of threads:
To be specified by an environment
variable “OMP_NUM_THREADS”

In csh or tcsh:

In sh, bash, ksh:

The default value is the number of CPUs installed in the
computer.
To display the current value:

kyu-cc% setenv OMP_NUM_THREADS 4

kyu-cc% export OMP_NUM_THREADS=4

kyu-cc% echo $OMP_NUM_THREADS

The syntax depends
on the command
language interpreter
(shell).

35

Executing a Thread-Parallel Program (3)

The value of “OMP_NUM_THREADS” will be
preserved until you set it again or you log out.
To execute a parallel executable code by auto-
parallel or OpenMP:

Just type the file name.

kyu-cc% ./example

36

MPI Compilation

The compilation command must be one starting
with “mp” at the head of the command name.

kyu-cc% mpcc –o example example.c

kyu-cc% mpf90 –o example example.f90

kyu-cc% mpf77 –o example example.f

10

37

Executing MPI Programs (1)

A parallel program made with MPI runs on multiple
processes.

MPI executable program

process

38

Executing MPI Programs (2)

The number of processes:
In interactive sessions, it must be specified by “-procs”
option at each execution.

kyu-cc% ./example –procs 4

Important Notes:
(1) This approach is quite different from thread-

parallel cases.
(2) This syntax DOES NOT APPLY to batch jobs.

(See “JCF Sample (3): an MPI Program” in
Slide #55 for more details.)

39

Charges

Our HPC service is NOT FREE of charge.
The choice of the payment plan is not yours but your
advisor’s.
Please refer to Chapter 3 of:
http://isabelle.cc.kyushu-u.ac.jp/~amano/ccc/p5/
for more details of our charging system.
However, today’s exercise is free.

Warning:
The current CPU time charge for shared resource plans
is based on the total CPU time of the program.
This means that most parallel programs costs more
money than a sequential version.
You must carefully consider the tradeoff between the
increased cost and the improved response.

40

Exercise (1): Interactive Sessions

Accessing kyu-cc
Logging in Windows
Logging in AIX
Changing your initial password

Preparing sample files
Copying the sample file package and unpacking it

Compiling a sequential program
Automatic parallelization
OpenMP: compilation and execution
MPI: compilation and execution

See the separate
instructions for
more details.

11

41

Today’s Schedule
Basics

System Overview
Performance
Operation Details
Accessing the HPC Servers

Compiling, Linking and Executing a Program
Compilation Commands and Their Options
Compilation Options for Parallel Programs
MPI parallel programs

Batch Jobs for Large-Scale Computations
How the Batch System Works
Job Classes and Their Limits
Job Command Files
How to Monitor and Control Your Batch Jobs

42

Batch Jobs for Large-Scale
Computations

Now, we are ready to carry out a large
computation which cannot be processed in

interactive sessions.

43

How the Batch System Works

Users submit their request (job).
The batch job scheduler accepts the submitted job, but
may not start it immediately.

The scheduler starts a job when the required
resource becomes available.

Jobs are stored in job classes which caracterize the
size of the required resource.

Job Classes
Server

Jobs

44

Why Batch, Not Interactive?

In interactive sessions:
Some commands cannot be executed when the
remaining computer resource is not enough.

Such a command will be rejected.

You cannot tell when the resource will become
available.

Perhaps you do not wish to keep typing your command.

“Reservation” mechanism is a good solution for
this problem.

The system will automatically start the execution of your
command when the required resource becomes
avalable.

12

45

When to Use the Batch System

When you need a large computer resource:
many CPUs
a large memory
a long execution time

In an interactive session (on kyu-cc):
The maximum memory is limited to 1GB.
The maximum CPU time is limited to 1 hour.

(Every user share the 16 CPUs installed in the user front-end
with the other users.)

All requests exceeding this limit will be terminated
automatically.

you must execute them on the back-end servers with
the help of the batch system.

46

Job Classes

Classify the user requests by the resource limits
the number of CPUs (#CPUs)
memory size
the number of processes (#processes)
the execution time

Scheduling Policy
In the same job class, each job will be executed in the
first-in, first-out order.
When we look at multiple job classes, a job in one class
may pass some waiting jobs in other classes.

Smaller jobs are likely to run before larger ones.

47

Resource Limits

16
16
16
16
8
4
2
1

#CPUs

161 week3GB/processms for MPI jobs
81 week6GB/processmm

11 week48GBe16

4

1
1
1
1

#processes

1 week24GBe8

For OpenMP or
auto-parallel
jobs

1 week3GBe1
1 week6GBe2

All users share
the 16 CPUs.

1 hour１GBinteractive

1 week12GB/processml

1 week12GBe4

descriptiontimememoryclass

The total CPU time for a single process

The elapsed time
48

Cautions
The batch job classes listed in the table are those for
shared use.

Your laboratory may have made a contract on the exclusive
resource plan.
In that case, your lab has the dedicated job classes assigned only
for that lab.
Please consult your advisor for more details.

The numbers of CPUs listed in the table:
Guaranteed for a single batch job once it starts running.
Will stay granted to the running job even when the system
becomes heavily loaded.

A job can declare a greater number of threads.
It may be granted more CPUs when available.
However, it may share extra CPUs with other jobs when the
system is busy.

13

49

Other Limits

The maximum number of jobs which can be
executed for a single user:
8
You can submit as many jobs as you like, but only
8 of them can run at one time.

50

Job Command File (JCF)

A text file which describes the sequence of
commands to execute in the job

You can create your JCF with a text editor on the front-
end (kyu-cc).
You can also edit one with any other text editor installed
on your PC and transfer it to kyu-cc.

A JCF looks similar to a shell script file:
Containing some control statements at the top of the file
Containing a sequence of commands to be executed.

51

JCF (Differences from FUJITSU VPP5000)
A JCF looks just like an ordinary shell script, but it is NOT.

On VPP, a job is described in a plain shell script file.

The target job class must be explicitly specified in the JCF.
On VPP, it can be specified in a command line option at job
submission time.

The input and the output files must be specified explicitly
and properly in the JCF.

On VPP, those files are automatically generated.
Improper setting will cause the complete loss of computing results or
the accidental destruction of the previous results of the same JCF.

The initial working directory is the directory when the JCF
is submitted.

On VPP, it is the user’s home directory.

52

JCF Syntax

Control lines starting with “# @” at the top of a JCF
Specifying the configuration of the job

#!/usr/bin/csh

@ class = job_class_name
@ output = file_to_store_standart_output
@ error = file_to_store_standard_error
@ queue
command_to_execute_1
command_to_execute_2

:

14

53

JCF Sample (1): a Sequential Program

Choose the job class according to the memory
requirement.
“$(jobid)” in a JCF will be automatically
substituted by the job ID.

Standard output and standard error can be a single
(same) file.

#!/usr/bin/csh

@ class = e1
@ output = test1.o$(jobid)
@ error = test1.e$(jobid)
@ queue
./a.out

This is a good
practice to avoid
accidentally
destroying the result
of the previous
execution of the
same JCF.

54

JCF Sample (2): Auto-Parallel, OpenMP

The number of threads must be specified before
the execution of parallel programs.

#!/usr/bin/csh

@ class = e8
@ output = test2.o$(jobid)
@ error = test2.e$(jobid)
@ queue
setenv OMP_NUM_THREADS 4
./a.out

55

JCF Sample (3): an MPI Program

An MPI job involves multiple processes.
To execute this kind of parallel jobs, "job_type =
parallel" must be declared in the JCF.
"total_tasks" value must be fixed to determine the
number of processes.

Execution option "-procs" will be ignored.

#!/usr/bin/csh

@ class = mm
@ job_type = parallel
@ total_tasks = 4
@ output = mpi.jcf.o$(jobid)
@ error = mpi.jcf.e$(jobid)
@ queue
./a.out

cf. Slide #38

56

JCF Sample (4): Gaussian03

Allocate the scratch files to be used by Gaussian
in the local file system of the back-end server
instead of the front-end.

To achieve better I/O performance
Must be deleted after the execution

#!/usr/bin/csh

@ class = e1
@ output = test4.o$(jobid)
@ error = test4.e$(jobid)
@ queue
setenv GAUSS_SCRDIR /work/users/${LOADL_STEP_OWNER}/${LOADL_JOB_NAME}
g03 test
/usr/bin/rm –rf /work/users/${LOADL_STEP_OWNER}/${LOADL_JOB_NAME}/*

15

57

Other Useful Keywords in JCF

timing of e-mail notification (default: complete)
complete Notify when the job is finished.
start Notify when the job is started.
error Notify when the job is terminated abnormally.

always Notify for all the above occasions.
never Never notify.

notification

destination of the notification e-mail
(default: your_ID@kyu-cc.cc.kyushu-u.ac.jp

notify_user

the initial directory
(default: where the directory the JCF is submitted)

initialdir

descriptionkeywords

58

Notification by e-Mails

We recommend you to enable the mail forwarding.
The default destination of notification mails is:
your_ID@kyu-cc.cc.kyushu-u.ac.jp

You cannot read the mails unless you log in kyu-cc.
Instead, the mails can be redirected to your office mail
account.

Just write your address in “.forward” file in the home directly.

This will save you specifying “notify” option in every
JCF.

kyu-cc% echo your_address > .forward

59

Other Tips for JCF

The output and error files will be overwritten each
time, if the file names are fixed.

If the file names have “$(jobid)” as suffix, the
accidental loss of the previous execution will be avoided.

The end line of a JCF must be a blank line.

command command

60

How to Monitor and Control Your Jobs

Job Submission:
llsubmit

Job Status Monitoring
qps

Job Canceling
llcancel

16

61

Job Submission: llsubmit

Basic Command Usage:
llsubmit JCF_file_name

kyu-cc% llsubmit test.jcf

62

Job Status Monitoring: qps

Basic Command Usage:
qps option

This will display the list of:
all the jobs submitted by the user (without option)
all the running jobs (for “-a” option)
all the waiting jobs (for “-q” option)

When the list contain too many lines:

kyu-cc.14524.0 k70043a 3/8 17:57 R 50 e4 kyu-cc-g 00:10:43

job ID user ID

submission date/time

job class

R: Running
I: Idle
NQ: Not Queued

kyu-cc% qps –a | less

consumed CPU time

63

Job Canceling: llcancel

Basic Command Usage:
llcancel job_ID
llcancel job_number

job ID format: kyu-cc.12345.0
job number format: 12345
job ID (job number) can be obtained by “qps” command.

kyu-cc% llcancel kyu-cc.12345.0

kyu-cc% llcancel 12345 Both usages give
you the same effect.
Both usages give
you the same effect.

64

Exercise (2): Batch Jobs

Job Command Files (JCFs)
Job Submission
Job Status Monitoring
Job Canceling

See the separate
instructions for
more details.

17

65

Appendix

Categories of Basic Parallelization Approaches
(Slide #66)

Using Numerical Libraries (Slide #76)

66

Categories of Basic Parallelization Approaches

Automatic Parallelization
no source program modification required
thread-parallel execution

OpenMP
slight source program modification required
thread-parallel execution

MPI
extensive source program modification required
process-parallel execution

Hybrid
auto-parallel + MPI, or, OpenMP + MPI

67

Automatic Parallelization

No source program modification required
A sequential program is automatically parallelized by
the compiler, but with a limited capability.

Sequential
Fortran/C program

compilation
(automatic

parallelization)

Executable on multiple CPUs,
but may not be very efficient

The generated code controls
multiple CPUs.

68

OpenMP

Slight source program modification required
The executable code is directly generated by an
OpenMP-capable compiler.
The executable code maybe more efficient than auto-
parallel approach.

Fortran/C program
with slight change

compilation
(semi-automatic
parallelization)

Executable on multiple CPUs,
and may be more efficient than
the auto-parallel approach.

The generated code controls
multiple CPUs.

18

69

OpenMP Resource

For more details, please refer to other resources
such as:

The OpenMP Architecture Review Board Web Site:
http://www.openmp.org/

Rohit Chandra, Ramesh Menon, Leo Dagum, David
Kohr, Dror Maydan, Jeff McDonald: “Parallel
Programming in OpenMP”, Morgan-Kaufman, 2000.
(ISBN: 1-55860-671-8)
Michael J. Quinn: “Parallel Programming in C With MPI
and OpenMP”, Mcgraw-Hill College, 2003.
(ISBN: 0072822562)

70

Execution of a Thread-Parallel Program

A parallel program made by auto-parallel or
OpenMP runs on multiple threads within a single
process.

thread
auto-parallel/
OpenMP
executable
code

If there are enough number of CPUs available, each thread runs
on a CPU. Otherwise, some of them may run on the same CPU.

process

71

MPI

Extensive source modification required
The modified version is no longer a sequential program.
Programmers must control the communication and
sychronization between processes.

Fortran/C program
with extensive
change compilation

But, copies of the same code run
on multiple CPUs in parallel.MPI library

Each copy of the generated
code controls only a single CPU.

72

MPI Resource

For more details, please refer to other resources
such as:

Peter Pacheco: “Parallel Programming With MPI”,
Morgan Kaufmann Pub., 1996. (ISBN: 1558603395)
William Gropp, Ewing Lusk, Anthony Skjellum:
“Using MPI: Portable Parallel Programming With the
Message-Passing Interface (2nd Edition, Scientific and
Engineering Computation Series)”, MIT Press, 1999.
(ISBN: 0262571323)
Michael J. Quinn: “Parallel Programming in C With MPI
and OpenMP”, Mcgraw-Hill College, 2003.
(ISBN: 0072822562)
http://www.mpi-forum.org/

19

73

Execution of a Process-Parallel Program

A parallel program made with MPI runs on multiple
processes.

MPI executable program

process

74

Hybrid Approach

The most complex approach
Automatic Parallelization + MPI
OpenMP + MPI

Fortran/C program
with far more extensive
change

compilation
(auto/semi-auto
parallelization)

linking

MPI library

process

threads

75

Execution of a Hybrid-Parallel Program

A parallel program made by the hybrid approach
runs on multiple threads on multiple processes.

76

Using Numerical Libraries (1)

ESSL
Compile the source program with the following option:
-lessl … for the sequential version of ESSL
-lesslsmp … for the parallel version of ESSL

(must be compiled with “_r” commands)
IMSL/Fortran Library

$F90FLAGS (for compilation) and $LINK_F90 (for link-
editing) must be set properly.

IMSL/C Library
$CFLAGS (for compilation) and $LINK_CNL (for link-
editing) must be set properly.

kyu-cc% source /usr/appl/CTT6.0/ctt/bin/cttsetup.csh

20

77

Using Numerical Libraries (2)

NAG
Compile the source program with the following option:
-lnag … for static linking
-lnag_sh … for dynamic linking
-lnag_use_essl –lessl

…use it it with BLAS in ESSL

LAPACK
Compile the source program with the following option:
-llapack –lessl

... to be used with the sequential version of ESSL
-llapack_smp –lesslsmp

... to be used with the parallel version of ESSL
(must be compiled with “_r” commands)

78

For More Information…

Our English materials are not provided well. We
apologize to you for inconvenience.
If you have any question, however, please do not
hesitate to contact:
amano@cc.kyushu-u.ac.jp

79

Thank you!

