High-Performance Computing Servers Seminar for Foreign Students

November 2, 2005 Hirofumi Amano Computing and Communications Center Kyushu University

Other Useful Materials

- "High-Performance Computing Servers (IBM p5) First-Step Guide"
 - http://isabelle.cc.kyushu-u.ac.jp/~amano/ccc/p5/
- English documents provided by IBM and other software vendors
 - Chapter 2 of the above guide will be a good place to start your search.

About This Seminar

□ This seminar is:

- for those who are not good at Japanese;
- designed to give a "crash-course" on how to use our High-Performance Computing Servers.
- □ This seminar is NOT:
 - a UNIX seminar;
 - a programming seminar;
 - a program tuning seminar.

After this seminar:

 you will be able to run your programs on our HPC Servers in interactive sessions or in batch jobs.

How to Obtain Your Accounts

- For this seminar, you are given a temporary account.
- After this seminar:
 - Please consult your advisor (professor/associate professor) for your permanent account.
 - In some laboratories, your advisor may have already obtained accounts for the lab's students.
- □ When you need a new account:
 - We recommend you to apply for your account with the help of your advisor.
 - This is because our HPC service is NOT FREE and the payment plan is not yours but your advisor's.

Performance (2)				
Single-CPU Performance Measured by More Realistic Programs				
Sparse Matrix-Vector Press	oduct			
(100,000 dimensions, co elements)	ontaining 1,000,000 non-zero			
IBM Power5 1.9GHz	<u>0.009 sec</u>			
Intel Itanium2 1.5GHz	0.012 sec			
Intel Xeon 3.2GHz	0.040 sec			
Dense Matrix Product (2,000 × 2,000)				
IBM Power5 1.9GHz	16.57 sec			
Intel Itanium2 1.5GHz	11.23 sec			
Intel Xeon 3.2GHz	34.61 sec			
	11			

Performance (1)						
Theoretical Peak Performance of a Single CPU: 7.6GFLOPS						
	7,600,000,000 floating-point operations per second!					nd!
Single-CPU Performance (SPEC Benchmark)					k)	
[CPU		SPECint2000 base		SPECfp2000 base	
	IBM Power5 1.9GH	z	13	92	2585	
	Intel Itanium2 1.6G	Ηz	15	35	2675	
	Fujitsu SPARC64V 2.16GHz		14	56	1808	
	Intel Pentium4 3.8GHz		1793		1976	
Parallel Performance(SPEC OMPL2001 base)					se)	
	Machines	CPU	5		PECompL2001 base	
	IBM p5 model 595	Power5 1	.9GHz x 64		620741	
	SGI Altix 3700	Itanium2	1.6GHz x 64		507602	
	Fujitsu HPC2500	SPARC64V 1.3GHz x 128			262140	

Accessing the User Front-End (kyu-cc) (2)

- Uploading/downloading your files
 - SFTP (Secure FTP) capability is required.
 - Windows: WinSCP3
 - MacOS: MacSFTP
 - UNIX: sftp command (included in the OpenSSH package)

15

- Conventional FTP access is disabled.
- SCP access from outside kyu-cc is also disabled.

Download Sites for Client Software

Windows

Putty

http://www.chiark.greenend.org.uk/~sgtatham/putty/

- TTSSH http://sourceforge.jp/projects/ttssh2/
- WinSCP3 http://winscp.net/

MacOS

 MacSSH and MacSFTP http://pro.wanadoo.fr/chombier/

Compiling, Linking and Executing a Program

First, we learn how to compile, link and execute a program in interactive sessions.

22

24

Basic Compilation Commands				
Language	Sequential (single CPU)	Auto-Parallel/ OpenMP	MPI	Hybrid
С	cc	cc_r	mpcc	mpcc_r
Fortran77	£77	f77_r	mpf77	mpf77_r
Fortran90	£90	f90_r	mpf90	mpf90_r

Other Commands

- x1c ANSI C89-Complient C Programs
- **xlf90** Fortran90 programs having an extension ".f"
- x1C C++ Programs
- A dedicated command for each parallelization method

-c	Create an object file instead of an executable file.			
-o filename	Store the output (executable or object) into the file specified by <i>filename</i> , instead of the default (*.0 or a.out).			
-qfree	Compile the file as a free-format Fortran source program.			
-qfixed	Compile the file as a fixed-format Fortran source program.			
-0	Apply basic optimizations only.			
-03	Apply deeper optimizations such as changing the execution order of operations. This may cause some side effects.			
-04	Apply further optimizations in addition to those caused by -O3.			
-05	Try the deepest optimizations.			
-qstrict	(Together with optimization option -O3, -O4, or -O5) Create an executable/object code which preserves the original execution order of operations specified in the source.			

Basic Compilation Options for C/C++				
-c	Create an object file instead of an executable file.			
-o filename	Store the output (executable or object) into the file specified by <i>filename</i> , instead of the default (*.0 or a.out).			
-lm	Link mathematical functions in math library. This option must be specified at the end of the command line.			
-0	Apply basic optimizations only.			
-03	Apply deeper optimizations such as changing the execution order of operations. This may cause some side effects.			
-04	Apply further optimizations in addition to those caused by -O3.			
-05	Try the deepest optimizations.			
-qstrict	(Together with optimization option -O3, -O4, or -O5) Create an executable/object code which preserves the original execution order of operations specified in the source.			
	29			

Charges

- Our HPC service is **NOT FREE** of charge.
 - The choice of the payment plan is not yours but your advisor's.
 - Please refer to Chapter 3 of: http://isabelle.cc.kyushu-u.ac.jp/~amano/ccc/p5/ for more details of our charging system.
 - However, today's exercise is free.

D Warning:

- The current CPU time charge for shared resource plans is based on the total CPU time of the program.
- This means that most parallel programs costs more money than a sequential version.
- You must carefully consider the tradeoff between the increased cost and the improved response.

Executing MPI Programs (2)
 The number of processes:

 In interactive sessions, it must be specified by "-procs" option at each execution.
 kyu-cc% ./example -procs 4 .

 Important Notes:

 This approach is quite different from thread-parallel cases.
 This syntax DOES NOT APPLY to batch jobs. (See "JCF Sample (3): an MPI Program" in Slide #55 for more details.)

Batch Jobs for Large-Scale Computations

Now, we are ready to carry out a large computation which cannot be processed in interactive sessions.

42

44

Why Batch, Not Interactive?

In interactive sessions:

- Some commands cannot be executed when the remaining computer resource is not enough.
 - Such a command will be rejected.
- You cannot tell when the resource will become available.
 - Perhaps you do not wish to keep typing your command.
- "Reservation" mechanism is a good solution for this problem.
 - The system will automatically start the execution of your command when the required resource becomes avalable.

When to Use the Batch System

- □ When you need a large computer resource:
 - many CPUs
 - a large memory
 - a long execution time
- □ In an interactive session (on kyu-cc):
 - The maximum memory is limited to 1GB.
 - The maximum CPU time is limited to 1 hour.
 - (Every user share the 16 CPUs installed in the user front-end with the other users.)
- All requests exceeding this limit will be terminated automatically.
 - you must execute them on the back-end servers with the help of the batch system.

Resource Limits					
	The total CPU	J time for	a single proces	s	
class	memory	time	#processes	#CPUs	description
interactive	1GB	1 hour			All users share the 16 CPUs.
e1	3GB	1 week	1	1	For OpenMP or
e2	6GB	1 week	1	2	auto-parallel
e4	12GB	1 week	1	4	JODS
e8	24GB	1 week	1	8	
e16	48GB	1 week	1	16	
ms	3GB/process	1 week	16	16	for MPI jobs
mm	6GB/process	1 week	8	16	
ml	12GB/process	, 1 week	4	16	
The elapsed time					

Job Classes

Classify the user requests by the resource limits

- the number of CPUs (#CPUs)
- memory size
- the number of processes (#processes)
- the execution time
- Scheduling Policy
 - In the same job class, each job will be executed in the first-in, first-out order.
 - When we look at multiple job classes, a job in one class may pass some waiting jobs in other classes.
 Smaller jobs are likely to run before larger ones.

Cautions

- The batch job classes listed in the table are those for shared use.
 - Your laboratory may have made a contract on the exclusive resource plan.
 - In that case, your lab has the dedicated job classes assigned only for that lab.
 - Please consult your advisor for more details.
- The numbers of CPUs listed in the table:
 - Guaranteed for a single batch job once it starts running.
 - Will stay granted to the running job even when the system becomes heavily loaded.
- A job can declare a greater number of threads.
 - It may be granted more CPUs when available.
 - However, it may share extra CPUs with other jobs when the system is busy.

Other Limits

- The maximum number of jobs which can be executed for a single user:
 - 8
- You can submit as many jobs as you like, but only 8 of them can run at one time.

JCF (Differences from FUJITSU VPP5000)

- A JCF looks just like an ordinary shell script, but it is NOT.
 On VPP, a job is described in a plain shell script file.
- The target job class must be explicitly specified in the JCF.
 On VPP, it can be specified in a command line option at job submission time.
- The input and the output files must be specified explicitly and properly in the JCF.
 - On VPP, those files are automatically generated.
 - Improper setting will cause the complete loss of computing results or the accidental destruction of the previous results of the same JCF.

51

- The initial working directory is the directory when the JCF is submitted.
 - On VPP, it is the user's home directory.

Job Command File (JCF)

A text file which describes the sequence of commands to execute in the job

- You can create your JCF with a text editor on the frontend (kyu-cc).
- You can also edit one with any other text editor installed on your PC and transfer it to kyu-cc.
- A JCF looks similar to a shell script file:
 - Containing some control statements at the top of the file
 - Containing a sequence of commands to be executed.

50

> JCF Syntax . Control lines starting with "# @" at the top of a JCF . b pecifying the configuration of the job . f / f usr / bin / csh # (usr / bin / csh # @ class = job_class_name # @ output = file_to_store_standart_output # @ queue command_to_execute_1 c

JCF Sample (4): Gaussian03
Allocate the scratch files to be used by Gaussian in the local file system of the back-end server instead of the front-end.
To achieve better I/O performance
Must be deleted after the execution
#!/usr/bin/csh
<pre># @ class = e1 # @ output = test4.o\$(jobid) # @ error = test4.e\$(jobid) # @ queue</pre>
setenv GAUSS_SCRDIR /work/users/\${LOADL_STEP_OWNER}/\${LOADL_JOB_NAME} q03 test
/usr/bin/rm -rf /work/users/\${LOADL_STEP_OWNER}/\${LOADL_JOB_NAME}/*
56

Other Useful Keywords in JCF				
keywords	description			
initialdir	the initial directory (default: where the directory the JCF is submitted)			
notify_user	destination of the notification e-mail (default: <i>your_ID</i> @kyu-cc.cc.kyushu-u.ac.jp			
notification	timing of e-mail notification (default: complete)			
	complete	Notify when the job is finished.		
	start	Notify when the job is started.		
	error	Notify when the job is terminated abnormally.		
	always	Notify for all the above occasions.		
	never	Never notify.		
		57		

Appendix

•Categories of Basic Parallelization Approaches (Slide #66)

•Using Numerical Libraries (Slide #76)

Categories of Basic Parallelization Approaches Automatic Parallelization

- no source program modification required
- thread-parallel execution
- OpenMP
 - slight source program modification required
 - thread-parallel execution

MPI

65

- extensive source program modification required
- process-parallel execution

Hybrid

auto-parallel + MPI, or, OpenMP + MPI

OpenMP Resource

- For more details, please refer to other resources such as:
 - The OpenMP Architecture Review Board Web Site: http://www.openmp.org/
 - Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, Jeff McDonald: *"Parallel Programming in OpenMP"*, Morgan-Kaufman, 2000. (ISBN: 1-55860-671-8)
 - Michael J. Quinn: "Parallel Programming in C With MPI and OpenMP", Mcgraw-Hill College, 2003. (ISBN: 0072822562)

MPI

 Programmers must control the communication and sychronization between processes.

Execution of a Thread-Parallel Program

A parallel program made by auto-parallel or OpenMP runs on multiple *threads* within a single process.

MPI Resource

- For more details, please refer to other resources such as:
 - Peter Pacheco: "Parallel Programming With MPI", Morgan Kaufmann Pub., 1996. (ISBN: 1558603395)
 - William Gropp, Ewing Lusk, Anthony Skjellum: "Using MPI: Portable Parallel Programming With the Message-Passing Interface (2nd Edition, Scientific and Engineering Computation Series)", MIT Press, 1999. (ISBN: 0262571323)
 - Michael J. Quinn: "Parallel Programming in C With MPI and OpenMP", Mcgraw-Hill College, 2003. (ISBN: 0072822562)
 - http://www.mpi-forum.org/

For More Information... Our English materials are not provided well. We apologize to you for inconvenience. If you have any question, however, please do not hesitate to contact: amano@cc.kyushu-u.ac.jp

